Inverse Scattering for Schrödinger-Type Operators with Interface Conditions Across Smooth Surfaces

نویسنده

  • Stephen O'Dell
چکیده

We consider direct and inverse scattering for the Laplace-Beltrami operator with electromagnetic potentials in domains with smooth surfaces upon which we impose interface conditions. The boundary conditions used encompass physical models of imperfect transmission arising in acoustics, quantum scattering, semiconductors, and geophysics. We prove uniqueness of the location of the surfaces and the interface conditions from the fixedenergy scattering amplitude. If the surface encloses a compact region, we also prove uniqueness of the Dirichlet-to-Neumann operator at the boundary of the obstacle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse scattering problem for the Impulsive Schrodinger equation with a polynomial spectral dependence in the potential

In the present work, under some di¤erentiability conditions on the potential functions , we …rst reduce the inverse scattering problem (ISP) for the polynomial pencil of the Scroedinger equation to the corresponding ISP for the generalized matrix Scrödinger equation . Then ISP will be solved in analogy of the Marchenko method. We aim to establish an e¤ective algorithm for uniquely reconstructin...

متن کامل

Inverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Periodic Potentials

We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap periodic potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.

متن کامل

Inverse Scattering Theory for One-dimensional Schrödinger Operators with Steplike Finite-gap Potentials

We develop direct and inverse scattering theory for one-dimensional Schrödinger operators with steplike potentials which are asymptotically close to different finite-gap potentials on different half-axes. We give a complete characterization of the scattering data, which allow unique solvability of the inverse scattering problem in the class of perturbations with finite second moment.

متن کامل

On the Spectral Properties of Dirac Operators with Electrostatic Δ-shell Interactions

In this paper the spectral properties of Dirac operators Aη with electrostatic δ-shell interactions of constant strength η supported on compact smooth surfaces in R3 are studied. Making use of boundary triple techniques a Krein type resolvent formula and a Birman-Schwinger principle are obtained. With the help of these tools some spectral, scattering, and asymptotic properties of Aη are investi...

متن کامل

Scattering matrix, phase shift, spectral shift and trace formula for one-dimensional dissipative Schrödinger-type operators

The paper is devoted to Schrödinger operators on bounded intervals of the real axis with dissipative boundary conditions. In the framework of the Lax-Phillips scattering theory the asymptotic behaviour of the phase shift is investigated in detail and its relation to the spectral shift is discussed. In particular, the trace formula and the Birman-Krein formula are verified directly. The results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2008